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Lattice Boltzmann simulations of contact line motion. II. Binary fluids
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We investigate the applicability of a mesoscale modeling approach, lattice Boltzmann simulations, to the
problem of contact line motion in one- and two-component two phase fluids. In this, the second of two papers,
we consider binary systems. We show that the contact line singularity is overcome by diffusion which is
effective over a length scale about the contact line and derive a scaling form for the dependenteonf
system parameters.
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I. INTRODUCTION andj=1,23...,Ny. The lattice spacing idx and we use
nine velocity vectorgthe so-called D2Q9 lattigeThe veloc-

In the preceeding paper of the same principal ttlé ity vectors are labeled by the subscript ef,i/cz, wherec
which we shall refer to as |, we investigated the way in=Ax/At, the lattice speed. Far=1 and 2 the label runs
which lattice Boltzmann simulations can be used to describéom 1 to 4 (this labeli is distinct from the coordinateas
contact line motion in liquid-gas systems. We found that theclear from the context The zero speed vector is labeleg.
diffuse nature of the interface in the model allowed move-To extend the lattice Boltzmann approach to a binary fluid an
ment of the contact line by evaporation and condensation cddditional set of fieldg,;(x,t) are needed. These are related
the surrounding fluid. We now undertake a similar investigato the concentration by
tion of contact line motion in binary systems. We find, in
agreement with Jacgmif2] and Cheret al. [3], a different 2 _
slip mechanism: the relative diffusion of the two fluid com- <~ 90i= - @
ponents in the vicinity of the contact line. For a summary of
the literature we refer the reader to the introduction in | andThe g,;(x,t) are evolved according to a lattice Boltzmann
the conclusion of this paper. equation assuming a single non dimensional relaxation time

In this paper we first summarize the extensions to therg:
lattice Boltzmann scheme described in | needed to treat a
binary system. We then describe how to implement wettin 1
bounﬁar);/ conditions so that the equilibriun? contact anglg g(,i(x+e(,iAt,tJrAt)—g(,i(x,t)=—T—g(gui—gi‘ﬂ). @
obtained in the simulations can be predicted using Cahn
theory. gctis a local equilibrium distribution. To gain an explicit

The algorithm is used to study the behavior of a shearedepresentation of{' we expand it as a power series in the
interface. We observe that diffuse interface effects are impornocal velocity:
tant within a lengthL of the contact line and give a scaling
argument, backed by numerical results, for hbvdepends CI=H_+ K, eyiaU,+ J u?+ Qu€riabsiplalp. (3)
on system parameters, such as viscosity, surface tension and
the diffusion constant. Our results differ from those obtained T0 impose the correct conservation laws for the order pa-
by Other authorS. In particu|ar we flnd that diffusive eﬁectsrameter the equilibrium diStribul‘ion funCtion iS Constrained
do not increase as the contact line speed is reduced. We shdly imposing
that in the limit that corresponds to strictly immiscible fluids
our data are consistent with the classical treatment which > g%9=¢. (4)
imposes a slip length to overcome the contact line singular- i
ity.

Y Higher order moments of{ are chosen so that the con-
tinuum level equations correctly describe the dynamics of a

Il. LATTICE BOLTZMANN MODEL binary fluid mixture. These constraints are

The free energy lattice Boltzmann model for one-
component fluids is described in section Il of I. We now > 0%%,1 .= dU,, (5)
consider a binary fluid with densitg, and ng of compo- oi
nentsA andB, respectively. The total fluid density is defined
by n=n,+ng and the order parameter is the concentration
d=np—ng.

We consider a two dimensional square lattice viithand
N, sites in thex andy directions, respectively. The lattice whereu is the chemical potential arld is a constant related
sites are labeled by coordinateisjj with i=1,2,3...,N,  to the mobility. Equationg1)—(6), together with equations

2 gg?eo'i aniB: Flu‘5aﬂ+ ¢UaUB ! (6)
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[(2)-1(9) define the lattice Boltzmann scheme for a binary Thermodynamics of the fluid
fluid. Possible values for the coefficients ifb)l and (3) are

The free energy we choose to describe the binary fluid is
listed in the Appendix. 9y y

Performing a Chapman-Enskog expandgidhshows that A, B, « )
the algorithm leads to the continuity equation ‘P:f V|5 "+ 7"+ 5(Vé)"+nTinnj, (13
dn+d,(nu,)=0, (7)  where the coefficienté&. and B determine the properties of
the bulk phasesT is the temperature, and the term in
the Navier-Stokes equation endows the interfaces with surface tension by penalizing

nonuniformities in¢.

(W) +d,(nu,u,) This choice of free energy leads to a chemical potential

—Ad+Bd3— kV2
P —— Agp+Bg3—kV2¢ (14)

3 -
nd,Ug+ndgu,— gﬁa(nuauﬁuy) - Sh(X)

and a pressure tensor

3 3
+ uyaa( Nup— EPQB) FUgdy| NSyy— ?P”)

P—T+A2+3B4 v KV25
ap=|NTH 5 ¢+ "=k V=5 (V)" | dup

3
+ (ua&an)an( ngaﬁ_ _2Paﬁ +((9aua) + K(aa¢)(aﬁ¢) (15)

c

We choosé€T = c¢?/3 to minimize the error terms in E@8).
| NSa — ina p ®) For two coexisting phase& must be negativégiving a
By g2 T By double well potentialand we restrict ourselves here to the

choiceA=—B andB>0. Minimization of the free energy

and a convection-diffusion equation for the order paramete?’v'th respect to variations igp leads to

w=A¢p+Bp>—kV24h=0. (16)

1 ¢
I+ do(PUs) = ( g™ E) At[FVZM— ‘7B(ﬁaapaﬁ) } Our choice ofA=—B gives two possible bulk solutions:
(9) ¢=1 and ¢=—1. Equation(16) also allows an interface
solution of the form

where P,z is the pressure tensor,r{—1/2)AtI'=M is
called the mobility coefficient and the dynamic viscosity ¢=tan}‘< L) (17)
=(7;—1/2)c?At/3. In the incompressible limit, the first J2¢g)!
three terms of Eq(8) reduce to the usual Navier-Stokes
equation with £(= \Jx/B) being the interface width. The surface ten-
sion for such an interface is=+/8«B/9.
d(NU) +dy(NUUL) = = d,P oy +7V2u,,  (10)
IIl. BOUNDARY CONDITIONS

and the remaining terms are error terms. On the right hand Wetting boundary conditions at the walls are implemented

side (_)f Eq.(9), the first term in square brackets is the usual, 4 way analogous to Sec. Il A of I. Following Cahn, we
diffusive term and the second is a small error term. add a surface term to the free energy

As in [, the evolution equatiof?) is split into a collision

step and a streaming step. A new figlfj(x,t) is defined by A B, « )
the equation ‘If=f dv Ed) +Z¢ +§(V¢>) +nTInn —f dShes,
\ S
1 (18
951 (X,1) = ggi(X,1) + 79(93?_ 9oi)- (1) whereh is the wetting potential ang, is the value of¢ on

the surfaces. Minimizing the free energy gives an equilib-
rium boundary conditioncd, ¢=—h on s which we impose
on the system. To obtain a given wetting anglg, h is

chosen from the relation
Q=+/—h=2sgn~ “H1-cod =
One lattice Boltzmann step is considered to be one collision >~ N xB"~ 25917 ~fw||c0q 3 /| 1-c0o8 3

step and one streaming step at each site. (29

The g% (x,t) stream according to

go—i(xat+At):g;i(x_eaiAt!t)' (12)
1/2
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Streaming

Streaming e ﬁé

(a) (b)
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FIG. 1. The effect of streaming with periodic and rotational

boundary conditions(a) Using periodic boundary conditions fluid FIG. 2. The steady state of the sheared system shoti(rg),

exits from the top and bottom of the domain and re-enters the syghe angle the tangent to the interfacexgtmakes with the wall at

tem at the bottom and top as indicated by the arrows. There are two=0. V; is the speed of the walls.

rotational symmetry pointd andB. (b) Using rotational boundary

conditions fluid flows betweek, andE, and betweert; andE, Interface profiles of systems for increasing shear rates are
under stream_lng. This use of the symmetry propertie@jiallows  ghown in Fig. 3 and the parameter sets used are given in
the computational burden to be halved. Table I. The systems approach the static angte 90°) at

the walls and achieve a maximum angle in the center. The

) . i le i ith the sh te. In Fig. 4
The details of the scheme can be found in REg$.and[7], maximum angle Increases wi € shear rate. In F1g. 4 we

. = 71 . -
which show that the correct equilibrium angle is obtained topIOt the mterface_ cur\_/atureR (x), (normalized to umt)/.
within 3% for the range 30 6,,< 150°. for the systems in Fig. 3 and observe that the normalized

grofiles collapse onto the same curve. Therefore, we con-
clude that the wall speed does not affect the curvature profile
of the interface, other than to determine its magnitude.

where a=arccos(sifd,) and sgnk) gives the sign ok [5].

To impose shear we use the boundary conditions on th
fields f,; described in I, Sec. Il B, together with an analo-
gous set of equations for the,;’s. Due to the definition of
the boundary conditionis, , the length of the system in the
direction, equals Nl,—1)Ax whereasL, the length of the
system in they direction, equaldNyAx.

In this paper we will consider periodic boundary condi-
tions in the direction parallel to the shear such that there are
two points of rotational symmetry, as shown in Figa)l In
order to reduce the computational burden we can exploit this
symmetry as suggested in Fig(bl using “rotational”
boundary conditions. The details for one lattice site on the
row j=N, are as follows: after the collision stég ,, 5, 140

52, 912, 051 andgs , reside at lattice sitei(N,). The ro-
tational boundary conditions mean tHgt, andg3 , stream to 130 |
f,4andg, 4 at site Ny—i+1N,), f7,andgy , stream tof; 4
andg, 4 at site (N,—i,N,) and 3, and g3, stream tof, 5
and g, 5 at site Ny—i—1,Ny). Using rotational boundary
conditions means that the domains may be halved in size.

(@) (b) (©) (@) ()

120 -
0(z)

110 - 1

IV. SHEARED SYSTEMS M
100 - M ]

We consider a system initially in equilibrium with two
coexisting phases. Phase $<£ —1) occupies the region
0<x<Ly,—L,/2<y<0 and phase 24=+1) the region 9
0<x<L,,0<y<L/2. The contact angles are 90° and in
equilibrium the interface is along the lie=0. We impose a
shear on the SYStem by moving the wallxat0 andL with FIG. 3. Top: Real space interface configurations for the simula-
velocities +Voy and —Vpy. A steady state is achieved as tions described in Table I. Dark shading represents the pitase
shown in Fig. 2. We measure the angix) that the tangent +1 and no shading the phage= —1. Bottom: Interface profiles
to the interface ak makes with the wall ay=0 measured for systems of increasiny,. The symbolsO, [0, ¢, A, and+
through phase 2. denote systems a, b, ¢, d, and e, respecti(se Table)l

0.0 0.2 0.4 0.6 0.8 1.0
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TABLE |. Parameter sets for systems with increasing

System N, N, B T Ty Vo K r

100 150 0.003 0.8 1.0 0.00050 0.01 8.0
100 150 0.003 0.8 1.0 0.00075 0.01 8.0
100 150 0.003 0.8 1.0 0.00100 0.01 8.0
100 150 0.003 0.8 1.0 0.00125 0.01 8.0
100 150 0.003 0.8 1.0 0.00150 0.01 8.0

O QO O T o

We now focus on one particular system and study the
chemical potential and velocity field in detail. We choose the
system in Fig. &).

[n equilibrium the chemical potential is zero everywherg, FIG. 5. Three-dimensional plot of the chemical potentiafor
while in the sheared system we expect a nonzero chemlcgbstem(c) in Table I (the « axis is scaled by 1. The negative and

potential. In Fig. 5 we show a three-dimensional plot of the,qitive peaks occur where the interface is in contact with the sur-
chemical potential for the chosen system. We see that whekgces and drive interspecies diffusion.

the interface is in contact with the surface the chemical po-

tential takes its extremal values. The Gibbs-Thompson rela; . . . . .
tion gives the value of the chemical potential at a gently10<'<3o the flow field is parallel to the interface and di-

: : rected away from the contact point. This region corresponds
curved interfacq8]. It is to the classical solution, where the tangential velocity of the
o fluids is continuous across the interface. The normalized flow
uAp= R (20)  field shows a jet into phase twoark shadingas expected

for the wedge flow solutiof9].

. . . . . In Fig. 8 we plot the fluid velocity in the center of the
where o is the surface tension ¢ is the difference in the system, 36i<70. [Again, the normalized flow field is

order parameter across the interface & the radius of - - : ;
shown in Fig. 8b).] We see that the flow in the interfacial
curvafjur_e. Afs a checlf, we plor': both and a/(RA¢;_at éheA region is very small but in different directions across the
curved interface against on the same axes in Fig. 6. AS jniarface. We see that in this region the flow is influenced by
expected we see IthatrfheﬂGg)bs—l'l'hompson relart:on holds. q jet in phase twdéfrom the contact point @t=1) and the
In Fig. 7 we plot the fluid velocity near to the contact . _. . Ll :

oint atgijzl ( er:o) We plot bot% the flow fieldFi jetin phase onefrom the contact point at=100). Thus, in
g dth T i dfl F} i, 7(b hich sh 9 this region the flow is geometry dependent and not expected

(@] an the normalized flow fie frig. ( )], which shows . to match the wedge solution. However, in this region, there is
the flow direction. Near the contact point we see that ﬂ”'dstill no flow across the interface
flows through the interface due to the no slip boundary con- We may therefore consider the flow field near the inter-

dition. Note, however, that there is flow through the interfacerace in terms of two different regions: The first, near to the
in the opposite direction to this in the regioss4<9. Thus, ' '

there is a stagnation point in the flow field as the flux through
the interface changes direction from positive to negative. For x107*

1.0

0.5

0.0 0.2 0.4 0.6 0.8 1.0

=z
Ly

0.0 03 0a 08 08 10
Z
Ly
FIG. 6. The two terms of the Gibbs-Thompson relation, Eq.
FIG. 4. Interface curvatureR %(x), (normalized by its maxi-  (20), at the interface for systeii) in Table | (O denotesw andO
mum) againstx/L, for the five systems in Fig. 3. Increasing the denotess/[RA ¢]). Diffusive effects are only important in the im-
wall velocity does not affect the length scale of the profiles. mediate vicinity of the walls.
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FIG. 7. Fluid velocity plots near the contact pointiatl (i.e.
x=0). (a) shows the flow fieldi(i,j), which has a maximum speed
of V, along the linei=1. (b) shows the normalized flow field
u(i,j)/|u(i,j)|, which displays the flow parallel to the interface and
the jet into phase 2. In the region<i <10, there is flow across the
interface.

PHYSICAL REVIEW E 69, 031603 (2004

SN
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30 35 40 45 50 55 60 65 70

i
(b)

FIG. 8. Fluid velocity plots for the center of the system (30
<i<70). (a) shows the flow fieldu(i,j) on the same scale as Fig.
7(a). (b) shows the normalized flow field(i,j)/|u(i,j)|, which
exhibits the jets from both contact points. The flow in this region is
therefore geometry dependent.

MV?2y at the interfacgnormalized by its value at the wall
falls through zero and rises again to the vatu@.1. We call

two contact points, has flow across the interface and the segy;q lengthL (see Fig. 10

ond, in the center of the system, has no flow across the in- \ya varied the system parametéfs, 7

terface.
We can make these observations more precise by consi
ering the convection-diffusion equation in the steady state

u-Vop=MV?u. (21

For flow through the interfacé.e. with a component ofi
parallel toV ¢) we expect the two sides of the equation to be
non-zero and balanced. For flow parallel to the interfaee
with u perpendicular toV ¢) we expect both sides of the
equation to be zero. In Fig. 9 we plot both terms of the

convection-diffusion equation and observe the two different

regions. For 6<x/L,=<0.1 and 0. x/L,<1 nonzero terms
balance while in the rest of the domain both terms are zer

0.
We conclude that diffusion effects are important near to the,_ .

x and M within
e stable ranges of the simulation and measiuethe re-

t
‘i?ults are shown on logarithmic plots in Fig. 11 together with

straight line fits to determine the exponents, which are listed
in Table II. To show the quality of the data we have plotted
againstM “1 %23 for all the data sets in Fig. 12. This shows
that our straight line fits are consistent over the complete
range of parameters used. For small valuek tife fit of the

data is worse as lattice effects increase. At the high end of
the range, the data is generated using parameters at the edge
of computational stability, hence reducing accuracy. The ex-
ponents fol/y andM leads us to conclude thhtis indepen-

TABLE II. Values of the exponentéwith errorg for the diffu-
sive length scalé.. ThusL ~M®7%k® with the values given.

. . . Exponent Value Error
contact line whereas further away diffusion plays no role.

Clearly it is important to understand the role diffusion Velocity, V, Co 0.00 0.00
plays in allowing the contact line to slip relative to the wall. Mobility, M (o 0.25 0.01
To this end we propose a measure of how the size of thigiscosity, 5 C, 0.28 0.01
diffusion region varies with the system parameters. We charsurface tension parameter, Cs 0.20 0.01

acterize this size by measuring the distance over which
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x10~* acterizes the fieldg andu (which are nontrivial only in the
4 : , , i dynamical case
We start by considering thg component of the steady-
state Stokes equation for a incompressible flL&d). (10)
) ] with the left hand side set to z€rointegrated across the
MV2p, interface in they direction:
oH ' f dy[9yPys+ d,Py 1= 7 f dyVZu,. (23)

u-V
¢ Using the definition oP ,; and a little algebra we rewrite the
left hand side of Eq(23) as

=2 F

_40.0 012 0t4 016 018 1.0 J dyay(nT)_‘—J dyq’)r?y,u (24)

L, The first term is zero for an incompressible fluid. The second
_ FIG. 9. The two terms of the convect_ion_-d_iffusion relation at the bsrzzghczga?:sigiggaqt;?) gy parts to gE@M—fdy(’“ayd))
interface. The two curves are almost indistinguishable, hence we To find the scaling of the right hand side of E@3) we

show no symbols. Diffusion is evidenced by the flow through the o
interface, which is only significant near the walls. useL as.the'length szcale fo.r the velgcny field. It follows that
the scaling ispuy,é/L<, leaving us with

dent ofV, and scales wittM ¥, The exponents for; and x Ab U
are 0.28 and 0.20, which are both consistent with 0.25, given y (25)

M.

that systematic errors enter the simulation wheand «x are 3 L2
varied. In Sec. V we will argue that the functional form for ) )

is To determine the form fok we now use the convection-
diffusion equation to eliminatgx andu, from Eq. (25). In
o\ 14 the steady state we have
Lef_ | TME 22)

A2 | u-Vo=MVZpu. (26)

The scaling length fow is L and V¢ scales likeA ¢/&.

. . 2~ . . . .
which, recalling that¢"~«, is consistent with the scaling Therefore the convection-diffusion equation scales as

observed.

Ao M
V. A SCALING ARGUMENT Uy M5 (27)
To find a scaling form forL®" we consider how the o )
steady-state Stokes and convection-diffusion equation scale Multiplying Egs. (25) and(27) and canceling the factors
in terms of two length scale, andL. Our argument is that ©f #Uy gives

¢ is a static length scale which charaterizie$the only non-

L - . Ap\? M

trivial static field and that a dynamical length scdlechar- (_ o (28)

3 L4

A MV2u -

10 J Finally we conclude that scales as

M £2 14
L~( 1;2 (29

P VI. DISCUSSION

We have performed lattice Boltzmann simulations of con-
tact line motion on a diffuse interface binary system using no
slip conditions at the boundary. The stress singularity at the
contact line is replaced by a finite peak. We have observed
how two distinct regions occur. Far from the contact line the
fluid flows parallel to the interface, as for the classical solu-

FIG. 10. Definition ofL. Note thatM V2 is normalized by its  tion, indicating no diffusion. Near the contact line, however,
value at the wall. there is a region where fluid flows across the interface which
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2 T T T 3 . T —

2l
InL i ] InL

l -

0—10 —‘9 -8 —‘7 -6 0—3 -‘2 —‘1 0

InVg Inn
(a) Slope = 0.00 + 0.00 (b) Slope = 0.28 + 0.01
20 T 35

/M 25+
InL 5| ] InL /

05

1.0 . -0.5 n
-5.5 -5.0 ~4.5 -15 ~0.5

15 2.5

05
Ink In M
(c) Slope = 0.20 + 0.01 (d) Slope = 0.25 £ 0.01

FIG. 11. Straight line fits to determine the dependenck oh simulation parameter&) wall velocity V,, (b) viscocity 7, (c) surface
tension parametex, and(d) mobility M. The exponents are listed in Table .

signals that diffusive effects are important. We used scalinglifferences between our conclusions and those of Jacgmin

considerations to argue that this length scales as and Cheret al. Finally, we discuss the validity of the results
in the context of no-slip boundary conditions.
2\ V4 Cox’s analysis of the contact line problem treated the
7M¢
L~ > (30

Ad 10
We have measured the scalinglofvith the system param-
etersVy,M, 7, andk. Recalling that= \/x, we observe that 8 r
the results agree well with the scaling argumentgiandM &
(with exponents 0.00 and 0.25, respectiveand that the 6L o i
exponents 0.28 fory and 0.20 forx are consistent withy** L f
and (¢?)Y%. We now compare the results of Secs. IV and V to Oo©
other work in the literature. 4y oo’ |

The classical work on contact line motidtreating the ooO

fluids as completely immiscibleculminated in the general 2t e
treatment of CoX9]. More recently, the contact line problem
in binary fluids has been investigated using diffuse interface 0 . ‘ ‘ .
methods by Jacgmif2] (using asymptotic analysis and finite 0 0.2 0.4 0.6 0.8 1
difference calculationsand Chenet al. [3] (who used an Mepezges

approximate analytical solution and direct numerical solution

to the diffuse interface equationdn the remainder of this

section we consider these treatments in turn, showing that FIG. 12.L from all data sets again® 1% 2« with the expo-
our data is consistent with Cox’s results and highlighting thenents taking the values in Table II.
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fluid-fluid interface as a material boundary so the two fluidsase— 0. In the most general case an intermediate region was
could not mix. At the wall the singularity in the stress wasrequired to perform this matching procedure.
relaxed by allowing the fluid to slip at distances of order The result for the asymptotic form of the interface profile
from the contact point. Three different phenomenologicalof the inner region as—«, to lowest order irfCaande was
slip models were used. Cox’s analysis was performed using
matched asymptotic expansions in two small parameters ( R
=s/R, whereR was a macroscopic length scale, &athe 0(r)=6y+Ca f(eo,)\)lnr+f(60,)\)ln(—) +QF
capillary number. It was found that two or three regions of S
expansion were required.

The outer region solution for the interface shape and flow
field depended on the of the system under consideration. Theheref, is the angle of the interface at its intersection with
inner region solution for the interface shape and flow fieldthe wall, r is the distance between the contact point and a
depended on the slip model used. These two solutions weifgoint on the interfaceR is a characteristic macroscopic
matched by joining the asymptotic form for the interfacelength, \ is the viscosity ratio of the two fluidsQ} is a
profile in the inner region as— o to that of the outer region constant of integration dependent on the slip model used and

(31)

2 SinG[N%(6?—sir?0) + 2\{0(— 0) +Sirt 0} +{(7— 6)>—sirf 6} ]
A (62— sir?6){(7— 6)+sin 6 cosé} +{(m— 6)?— sin6}( 6—sin 6 cosh)

f(ON)= (32

To compare Eq(31) to the simulation results we plot, in Fig. In the first study of the diffuse interface binary system
13, Inr againstd(r) for the systems in Fig. 3. We expect that applied to contact line motion, Jacqmi®] identified a
the lattice Boltzmann interfaces obey Cox's solution in thelength scale for the chemical potential and claimed that this
region where tangential velocity is continuous across the inscales asy7M (A¢=1 in Jacqmin’s work The length-
terface[identified in Flg Kb)] In Flg 13 this Corresponds to scale put forward by Jacqmin differs in form from Hqg),
2.3<In r53.4, where all five interfaces are consistent with and is not Supported by our data. Study”']g the same System
o(r)Inr. Furthermore, in this linear region the slope of 55 in Sec. 1V, Jacgmin noted that the chemical potential pat-
6(r) with Inr increases with increasing,, as expected from (grns “roughly halves in size” between data sets in which
Eq.(31). Thus we have demonstrated the compatibility of the3nqm) decreases by a factor of four. However, there is no
our data with the classical two-fluid treatment. quantitative analysis supporting the form used for the length-
scale.

0.8 ' ' ‘ ' The work of Chenet al. [3] suggests a length scalk,
=J(2Ma/Vy(A $)?), which is\2a/(5V,) times the length
scale proposed by Jacgmin. Significantly this length scale
diverges asVy—0, a phenomenon we do not observe. In
Ref. [3], no direct measurement of a length scale is dis-
cussed. The identification of, comes from scaling the
convection-diffusion equation, treating and ¢ as having
the same length scale. This suggests that in the region near to
the contact point the interface no longer has it static width
However, our data indicates that, at least for the moderate
shear rates considered here, the scale of the interface remains

0.0 ‘ - \ . determined by equilibrium properties. The flow fieldand

0.0 1.0 20 30 40 50 chemical potentiak are only nonzero in the moving system

and so their length scale is set by the size of the diffusive
- ; region.

o ,ngsy'é(,rgngrdfg;;?s gyst:%s;e; SbOI:FgJ .Srnlaeeszfm ?;tlje , We have shown how a diffuse interface model can over-
respectively. In the region where flow is expected to match the COMe the contact line problem, even under strict no-slip con-
classical slip solution (2:3Inr=3.4) 4 increases linearly with In  ditions. However an effective slip length, introduced by dif-
[Corresponding to the Interm in Eq(Sl)] As the Capi”ary number fusive eﬁeCtS, giVeS the same maCI’OSCOpiC interface behavior
increases the slope of the plot in this region increases, as expecté$ @ slip boundary condition. To pinpoint the physically rel-
from the factor ofCa in Eq. (31). Therefore we conclude that out- €vant mechanism, which may well be system dependent,
side the diffusive region the interface behavior is consistent with thelanoscale experiments or extremely large molecular dynam-
classical solutio9]. ics simulations will be needed.
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APPENDIX: COEFFICIENTS FOR THE BINARY MODEL
i Gapy=0 + S (o, py2— L Pet) (A8)
The coefficients are 2yy~g T gl% 16
AZ:%, (A1) Grug=4G,., forall a,B, (A9)
I'p
Ai=4A,, Ap=n—20A,, (A2) Ho=75, Hi=4H;, Ho=¢-20H;, (AlD)
n ¢
Bo=15 B1=4By, (A3) Ko=15 Ki=4Ks, (A11)
n ¢
Co=—54 C174Cy,  Co=16C,, (A4) Jo= =54 d1=4J2,  Jo=163, (A12)
n ¢
Do=3. Di1=4Dy, (AS) szg, Q1=4Q;. (AL13)
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