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Lattice Boltzmann simulations of contact line motion. II. Binary fluids

A. J. Briant and J. M. Yeomans
Department of Physics, Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom

~Received 26 July 2003; published 22 March 2004!

We investigate the applicability of a mesoscale modeling approach, lattice Boltzmann simulations, to the
problem of contact line motion in one- and two-component two phase fluids. In this, the second of two papers,
we consider binary systems. We show that the contact line singularity is overcome by diffusion which is
effective over a length scaleL about the contact line and derive a scaling form for the dependence ofL on
system parameters.
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I. INTRODUCTION

In the preceeding paper of the same principal title@1#,
which we shall refer to as I, we investigated the way
which lattice Boltzmann simulations can be used to desc
contact line motion in liquid-gas systems. We found that
diffuse nature of the interface in the model allowed mov
ment of the contact line by evaporation and condensatio
the surrounding fluid. We now undertake a similar investig
tion of contact line motion in binary systems. We find,
agreement with Jacqmin@2# and Chenet al. @3#, a different
slip mechanism: the relative diffusion of the two fluid com
ponents in the vicinity of the contact line. For a summary
the literature we refer the reader to the introduction in I a
the conclusion of this paper.

In this paper we first summarize the extensions to
lattice Boltzmann scheme described in I needed to tre
binary system. We then describe how to implement wett
boundary conditions so that the equilibrium contact an
obtained in the simulations can be predicted using C
theory.

The algorithm is used to study the behavior of a shea
interface. We observe that diffuse interface effects are imp
tant within a lengthL of the contact line and give a scalin
argument, backed by numerical results, for howL depends
on system parameters, such as viscosity, surface tension
the diffusion constant. Our results differ from those obtain
by other authors. In particular we find that diffusive effec
do not increase as the contact line speed is reduced. We s
that in the limit that corresponds to strictly immiscible fluid
our data are consistent with the classical treatment wh
imposes a slip length to overcome the contact line singu
ity.

II. LATTICE BOLTZMANN MODEL

The free energy lattice Boltzmann model for on
component fluids is described in section II of I. We no
consider a binary fluid with densitynA and nB of compo-
nentsA andB, respectively. The total fluid density is define
by n5nA1nB and the order parameter is the concentrat
f5nA2nB .

We consider a two dimensional square lattice withNx and
Ny sites in thex and y directions, respectively. The lattic
sites are labeled by coordinates (i , j ) with i 51,2,3, . . . ,Nx
1063-651X/2004/69~3!/031603~9!/$22.50 69 0316
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and j 51,2,3, . . . ,Ny . The lattice spacing isDx and we use
nine velocity vectors~the so-called D2Q9 lattice!. The veloc-
ity vectors are labeled by the subscripts5es i

2 /c2, wherec
5Dx/Dt, the lattice speed. Fors51 and 2 the labeli runs
from 1 to 4 ~this label i is distinct from the coordinatei as
clear from the context!. The zero speed vector is labelede0,0.
To extend the lattice Boltzmann approach to a binary fluid
additional set of fieldsgs i(x,t) are needed. These are relat
to the concentration by

(
s,i

gs i5f. ~1!

The gs i(x,t) are evolved according to a lattice Boltzman
equation assuming a single non dimensional relaxation t
tg :

gs i~x1es iDt,t1Dt !2gs i~x,t !52
1

tg
~gs i2gs i

eq!. ~2!

gs i
eq is a local equilibrium distribution. To gain an explic

representation ofgs i
eq we expand it as a power series in th

local velocity:

gs i
eq5Hs1Kses iaua1Jsu21Qses iaes ibuaub . ~3!

To impose the correct conservation laws for the order
rameter the equilibrium distribution function is constrain
by imposing

(
s,i

gs i
eq5f. ~4!

Higher order moments ofgs i
eq are chosen so that the con

tinuum level equations correctly describe the dynamics o
binary fluid mixture. These constraints are

(
s i

gs i
eqes ia5fua , ~5!

(
s i

gs i
eqes iaes ib5Gmdab1fuaub , ~6!

wherem is the chemical potential andG is a constant related
to the mobility. Equations~1!–~6!, together with equations
©2004 The American Physical Society03-1
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I~2!–I~9! define the lattice Boltzmann scheme for a bina
fluid. Possible values for the coefficients in I~5! and ~3! are
listed in the Appendix.

Performing a Chapman-Enskog expansion@4# shows that
the algorithm leads to the continuity equation

] tn1]a~nua!50, ~7!

the Navier-Stokes equation

] t~nug!1]a~nugua!

52]aPag1n]bFn]gub1n]bug2
3

c2
]a~nuaubug!

1ug]aS ndab2
3

c2
PabD 1ub]aS ndag2

3

c2
PagD

1~ua]an!]nS ndab2
3

c2
PabD 1~]aua!

3S ndbg2
3

c2
n]nPbgD G , ~8!

and a convection-diffusion equation for the order parame

] tf1]a~fua!5S tg2
1

2DDtFG¹2m2]bS f

n
]aPabD G ,

~9!

where Pab is the pressure tensor, (tg21/2)DtG5M is
called the mobility coefficient and the dynamic viscosityn
5(t f21/2)c2Dt/3. In the incompressible limit, the firs
three terms of Eq.~8! reduce to the usual Navier-Stoke
equation

] t~nug!1]a~nugua!52]aPag1h¹2ug , ~10!

and the remaining terms are error terms. On the right h
side of Eq.~9!, the first term in square brackets is the usu
diffusive term and the second is a small error term.

As in I, the evolution equation~2! is split into a collision
step and a streaming step. A new fieldgs i* (x,t) is defined by
the equation

gs i* ~x,t !5gs i~x,t !1
1

tg
~gs i

eq2gs i !. ~11!

The gs i* (x,t) stream according to

gs i~x,t1Dt !5gs i* ~x2es iDt,t !. ~12!

One lattice Boltzmann step is considered to be one collis
step and one streaming step at each site.
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Thermodynamics of the fluid

The free energy we choose to describe the binary fluid

C5E dVFA

2
f21

B

4
f41

k

2
~“f!21nT ln nG , ~13!

where the coefficientsA and B determine the properties o
the bulk phases,T is the temperature, and the term ink
endows the interfaces with surface tension by penaliz
nonuniformities inf.

This choice of free energy leads to a chemical potenti

m5
dC

df~x!
5Af1Bf32k¹2f ~14!

and a pressure tensor

Pab5S nT1
A

2
f21

3B

4
f42kf¹2f2

k

2
~“f!2D dab

1k~]af!~]bf!. ~15!

We chooseT5c2/3 to minimize the error terms in Eq.~8!.
For two coexisting phasesA must be negative~giving a

double well potential! and we restrict ourselves here to th
choiceA52B and B.0. Minimization of the free energy
with respect to variations inf leads to

m5Af1Bf32k¹2f50. ~16!

Our choice ofA52B gives two possible bulk solutions
f51 and f521. Equation~16! also allows an interface
solution of the form

f5tanhS x

A2j
D , ~17!

with j(5Ak/B) being the interface width. The surface te
sion for such an interface iss5A8kB/9.

III. BOUNDARY CONDITIONS

Wetting boundary conditions at the walls are implemen
in a way analogous to Sec. III A of I. Following Cahn, w
add a surface term to the free energy

C5E
V
dVFA

2
f21

B

4
f41

k

2
~“f!21nT ln nG2E

S
dShfs ,

~18!

whereh is the wetting potential andfs is the value off on
the surfaces. Minimizing the free energy gives an equilib
rium boundary conditionk]'f52h on s which we impose
on the system. To obtain a given wetting angleuw , h is
chosen from the relation

V[A 2

kB
h52 sgnS p

2
2uwD FcosS a

3 D H 12cosS a

3 D J G1/2

,

~19!
3-2
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wherea5arccos(sin2uw) and sgn(x) gives the sign ofx @5#.
The details of the scheme can be found in Refs.@6# and@7#,
which show that the correct equilibrium angle is obtained
within 3% for the range 30°,uw,150°.

To impose shear we use the boundary conditions on
fields f s i described in I, Sec. III B, together with an anal
gous set of equations for thegs i ’s. Due to the definition of
the boundary conditionsLx , the length of the system in thex
direction, equals (Nx21)Dx whereasLy , the length of the
system in they direction, equalsNyDx.

In this paper we will consider periodic boundary cond
tions in the direction parallel to the shear such that there
two points of rotational symmetry, as shown in Fig. 1~a!. In
order to reduce the computational burden we can exploit
symmetry as suggested in Fig. 1~b! using ‘‘rotational’’
boundary conditions. The details for one lattice site on
row j 5Ny are as follows: after the collision stepf 1,2* , f 2,1* ,
f 2,2* , g1,2* , g2,1* andg2,2* reside at lattice site (i ,Ny). The ro-
tational boundary conditions mean thatf 2,2* andg2,2* stream to
f 2,4 andg2,4 at site (Nx2 i 11,Ny), f 1,2* andg1,2* stream tof 1,4

and g1,4 at site (Nx2 i ,Ny) and f 2,1* and g2,1* stream tof 2,3

and g2,3 at site (Nx2 i 21,Ny). Using rotational boundary
conditions means that the domains may be halved in siz

IV. SHEARED SYSTEMS

We consider a system initially in equilibrium with tw
coexisting phases. Phase 1 (f521) occupies the region
0,x,Lx ,2Ly/2,y,0 and phase 2 (f511) the region
0,x,Lx,0,y,Ly/2. The contact angles are 90° and
equilibrium the interface is along the liney50. We impose a
shear on the system by moving the walls atx50 andLx with
velocities 1V0ŷ and 2V0ŷ. A steady state is achieved a
shown in Fig. 2. We measure the angleu(x) that the tangent
to the interface atx makes with the wall aty50 measured
through phase 2.

FIG. 1. The effect of streaming with periodic and rotation
boundary conditions.~a! Using periodic boundary conditions flui
exits from the top and bottom of the domain and re-enters the
tem at the bottom and top as indicated by the arrows. There are
rotational symmetry points,A andB. ~b! Using rotational boundary
conditions fluid flows betweenE1 andE2 and betweenE3 andE4

under streaming. This use of the symmetry properties in~a! allows
the computational burden to be halved.
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Interface profiles of systems for increasing shear rates
shown in Fig. 3 and the parameter sets used are give
Table I. The systems approach the static angle (u590°) at
the walls and achieve a maximum angle in the center. T
maximum angle increases with the shear rate. In Fig. 4
plot the interface curvatures,R̃21(x), ~normalized to unity!
for the systems in Fig. 3 and observe that the normali
profiles collapse onto the same curve. Therefore, we c
clude that the wall speed does not affect the curvature pro
of the interface, other than to determine its magnitude.

l

s-
o

FIG. 2. The steady state of the sheared system showingu(x0),
the angle the tangent to the interface atx0 makes with the wall at
x50. V0 is the speed of the walls.

FIG. 3. Top: Real space interface configurations for the simu
tions described in Table I. Dark shading represents the phasef5
11 and no shading the phasef521. Bottom: Interface profiles
for systems of increasingV0. The symbolss, h, L, n, and1
denote systems a, b, c, d, and e, respectively~see Table I!.
3-3
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A. J. BRIANT AND J. M. YEOMANS PHYSICAL REVIEW E69, 031603 ~2004!
We now focus on one particular system and study
chemical potential and velocity field in detail. We choose
system in Fig. 3~c!.

In equilibrium the chemical potential is zero everywhe
while in the sheared system we expect a nonzero chem
potential. In Fig. 5 we show a three-dimensional plot of t
chemical potential for the chosen system. We see that w
the interface is in contact with the surface the chemical
tential takes its extremal values. The Gibbs-Thompson r
tion gives the value of the chemical potential at a gen
curved interface@8#. It is

mDf5
s

R
, ~20!

wheres is the surface tension,Df is the difference in the
order parameter across the interface andR is the radius of
curvature. As a check, we plot bothm ands/(RDf) at the
curved interface againstx on the same axes in Fig. 6. A
expected we see that the Gibbs-Thompson relation hold

In Fig. 7 we plot the fluid velocity near to the conta
point at i 51 ~i.e., x50). We plot both the flow field@Fig.
7~a!# and the normalized flow field@Fig. 7~b!#, which shows
the flow direction. Near the contact point we see that fl
flows through the interface due to the no slip boundary c
dition. Note, however, that there is flow through the interfa
in the opposite direction to this in the region 4< i<9. Thus,
there is a stagnation point in the flow field as the flux throu
the interface changes direction from positive to negative.

TABLE I. Parameter sets for systems with increasingV0.

System Nx Ny B t f tg V0 k G

a 100 150 0.003 0.8 1.0 0.00050 0.01 8
b 100 150 0.003 0.8 1.0 0.00075 0.01 8
c 100 150 0.003 0.8 1.0 0.00100 0.01 8
d 100 150 0.003 0.8 1.0 0.00125 0.01 8
e 100 150 0.003 0.8 1.0 0.00150 0.01 8

FIG. 4. Interface curvature,R̃21(x), ~normalized by its maxi-
mum! againstx/Lx for the five systems in Fig. 3. Increasing th
wall velocity does not affect the length scale of the profiles.
03160
e
e

,
al

re
-

a-
y

d
-

e

h
r

10, i ,30 the flow field is parallel to the interface and d
rected away from the contact point. This region correspo
to the classical solution, where the tangential velocity of
fluids is continuous across the interface. The normalized fl
field shows a jet into phase two~dark shading! as expected
for the wedge flow solution@9#.

In Fig. 8 we plot the fluid velocity in the center of th
system, 30, i ,70. @Again, the normalized flow field is
shown in Fig. 8~b!.# We see that the flow in the interfacia
region is very small but in different directions across t
interface. We see that in this region the flow is influenced
the jet in phase two~from the contact point ati 51) and the
jet in phase one~from the contact point ati 5100). Thus, in
this region the flow is geometry dependent and not expec
to match the wedge solution. However, in this region, ther
still no flow across the interface.

We may therefore consider the flow field near the int
face in terms of two different regions: The first, near to t

FIG. 5. Three-dimensional plot of the chemical potentialm for
system~c! in Table I~them axis is scaled by 104). The negative and
positive peaks occur where the interface is in contact with the
faces and drive interspecies diffusion.

FIG. 6. The two terms of the Gibbs-Thompson relation, E
~20!, at the interface for system~c! in Table I (h denotesm ands

denotess/@RDf#). Diffusive effects are only important in the im
mediate vicinity of the walls.
3-4
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LATTICE BOLTZMANN . . . . II . . . . PHYSICAL REVIEW E 69, 031603 ~2004!
two contact points, has flow across the interface and the
ond, in the center of the system, has no flow across the
terface.

We can make these observations more precise by con
ering the convection-diffusion equation in the steady stat

u•“f5M¹2m. ~21!

For flow through the interface~i.e. with a component ofu
parallel to“f) we expect the two sides of the equation to
non-zero and balanced. For flow parallel to the interface~i.e.
with u perpendicular to“f) we expect both sides of th
equation to be zero. In Fig. 9 we plot both terms of t
convection-diffusion equation and observe the two differ
regions. For 0,x/Lx&0.1 and 0.9&x/Lx,1 nonzero terms
balance while in the rest of the domain both terms are z
We conclude that diffusion effects are important near to
contact line whereas further away diffusion plays no role

Clearly it is important to understand the role diffusio
plays in allowing the contact line to slip relative to the wa
To this end we propose a measure of how the size of
diffusion region varies with the system parameters. We ch
acterize this size by measuring the distance over wh

FIG. 7. Fluid velocity plots near the contact point ati 51 ~i.e.
x50). ~a! shows the flow fieldu( i , j ), which has a maximum spee
of V0 along the linei 51. ~b! shows the normalized flow field
u( i , j )/uu( i , j )u, which displays the flow parallel to the interface an
the jet into phase 2. In the region 1, i ,10, there is flow across the
interface.
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M¹2m at the interface~normalized by its value at the wall!
falls through zero and rises again to the value20.1. We call
this lengthL ~see Fig. 10!.

We varied the system parametersV0 ,h,k and M within
the stable ranges of the simulation and measuredL. The re-
sults are shown on logarithmic plots in Fig. 11 together w
straight line fits to determine the exponents, which are lis
in Table II. To show the quality of the data we have plottedL
againstMc1hc2kc3 for all the data sets in Fig. 12. This show
that our straight line fits are consistent over the compl
range of parameters used. For small values ofL the fit of the
data is worse as lattice effects increase. At the high end
the range, the data is generated using parameters at the
of computational stability, hence reducing accuracy. The
ponents forV0 andM leads us to conclude thatL is indepen-

FIG. 8. Fluid velocity plots for the center of the system (3
, i ,70). ~a! shows the flow fieldu( i , j ) on the same scale as Fig
7~a!. ~b! shows the normalized flow fieldu( i , j )/uu( i , j )u, which
exhibits the jets from both contact points. The flow in this region
therefore geometry dependent.

TABLE II. Values of the exponents~with errors! for the diffu-
sive length scaleL. ThusL;Mc1hc2kc3 with the values given.

Parameter Exponent Value Error

Velocity, V0 c0 0.00 0.00
Mobility, M c1 0.25 0.01
Viscosity,h c2 0.28 0.01
surface tension parameter,k c3 0.20 0.01
3-5
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A. J. BRIANT AND J. M. YEOMANS PHYSICAL REVIEW E69, 031603 ~2004!
dent ofV0 and scales withM1/4. The exponents forh andk
are 0.28 and 0.20, which are both consistent with 0.25, gi
that systematic errors enter the simulation whent f andk are
varied. In Sec. V we will argue that the functional form forL
is

Leff;S hMj2

Df2 D 1/4

, ~22!

which, recalling thatj2;k, is consistent with the scaling
observed.

V. A SCALING ARGUMENT

To find a scaling form forLeff, we consider how the
steady-state Stokes and convection-diffusion equation s
in terms of two length scales,j andL. Our argument is tha
j is a static length scale which charaterizesf ~the only non-
trivial static field! and that a dynamical length scaleL char-

FIG. 9. The two terms of the convection-diffusion relation at t
interface. The two curves are almost indistinguishable, hence
show no symbols. Diffusion is evidenced by the flow through
interface, which is only significant near the walls.

FIG. 10. Definition ofL. Note thatM¹2m is normalized by its
value at the wall.
03160
n
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acterizes the fieldsm andu ~which are nontrivial only in the
dynamical case!.

We start by considering they component of the steady
state Stokes equation for a incompressible fluid@Eq. ~10!
with the left hand side set to zero#, integrated across the
interface in they direction:

E dy@]xPyx1]yPyy#5hE dy¹2uy . ~23!

Using the definition ofPab and a little algebra we rewrite th
left hand side of Eq.~23! as

E dy]y~nT!1E dyf]ym. ~24!

The first term is zero for an incompressible fluid. The seco
term can be integrated by parts to give@fm#2*dy(m]yf)
which scales asm(Df/j)j.

To find the scaling of the right hand side of Eq.~23! we
useL as the length scale for the velocity field. It follows th
the scaling ishuyj/L2, leaving us with

m
Df

j
;h

uy

L2
. ~25!

To determine the form forL we now use the convection
diffusion equation to eliminatem and uy from Eq. ~25!. In
the steady state we have

u•“f5M¹2m. ~26!

The scaling length form is L and “f scales likeDf/j.
Therefore the convection-diffusion equation scales as

uy

Df

j
;M

m

L2
. ~27!

Multiplying Eqs. ~25! and ~27! and canceling the factor
of muy gives

S Df

j D 2

;
hM

L4
. ~28!

Finally we conclude thatL scales as

L;S hMj2

Df2 D 1/4

. ~29!

VI. DISCUSSION

We have performed lattice Boltzmann simulations of co
tact line motion on a diffuse interface binary system using
slip conditions at the boundary. The stress singularity at
contact line is replaced by a finite peak. We have obser
how two distinct regions occur. Far from the contact line t
fluid flows parallel to the interface, as for the classical so
tion, indicating no diffusion. Near the contact line, howev
there is a region where fluid flows across the interface wh

e

3-6
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FIG. 11. Straight line fits to determine the dependence ofL on simulation parameters.~a! wall velocity V0, ~b! viscocity h, ~c! surface
tension parameterk, and~d! mobility M. The exponents are listed in Table II.
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signals that diffusive effects are important. We used sca
considerations to argue that this length scales as

L;S hMj2

Df2 D 1/4

. ~30!

We have measured the scaling ofL with the system param
etersV0 ,M ,h, andk. Recalling thatj}Ak, we observe that
the results agree well with the scaling argument forV0 andM
~with exponents 0.00 and 0.25, respectively! and that the
exponents 0.28 forh and 0.20 fork are consistent withh1/4

and (j2)1/4. We now compare the results of Secs. IV and V
other work in the literature.

The classical work on contact line motion~treating the
fluids as completely immiscible! culminated in the genera
treatment of Cox@9#. More recently, the contact line problem
in binary fluids has been investigated using diffuse interf
methods by Jacqmin@2# ~using asymptotic analysis and finit
difference calculations! and Chenet al. @3# ~who used an
approximate analytical solution and direct numerical solut
to the diffuse interface equations!. In the remainder of this
section we consider these treatments in turn, showing
our data is consistent with Cox’s results and highlighting
03160
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differences between our conclusions and those of Jacq
and Chenet al. Finally, we discuss the validity of the resul
in the context of no-slip boundary conditions.

Cox’s analysis of the contact line problem treated t

FIG. 12. L from all data sets againstMc1hc2kc3 with the expo-
nents taking the values in Table II.
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A. J. BRIANT AND J. M. YEOMANS PHYSICAL REVIEW E69, 031603 ~2004!
fluid-fluid interface as a material boundary so the two flu
could not mix. At the wall the singularity in the stress w
relaxed by allowing the fluid to slip at distances of ordes
from the contact point. Three different phenomenologi
slip models were used. Cox’s analysis was performed us
matched asymptotic expansions in two small parametere
5s/R, whereR was a macroscopic length scale, andCa the
capillary number!. It was found that two or three regions o
expansion were required.

The outer region solution for the interface shape and fl
field depended on the of the system under consideration.
inner region solution for the interface shape and flow fi
depended on the slip model used. These two solutions w
matched by joining the asymptotic form for the interfa
profile in the inner region asr→` to that of the outer region
.
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he
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ase→0. In the most general case an intermediate region
required to perform this matching procedure.

The result for the asymptotic form of the interface profi
of the inner region asr→`, to lowest order inCa ande was

u~r !5u01CaH f ~u0 ,l!ln r 1 f ~u0 ,l!lnS R

s D1Qi* J ,

~31!

whereu0 is the angle of the interface at its intersection w
the wall, r is the distance between the contact point and
point on the interface,R is a characteristic macroscop
length, l is the viscosity ratio of the two fluids,Qi* is a
constant of integration dependent on the slip model used
f ~u,l!5
2 sinu@l2~u22sin2u!12l$u~p2u!1sin2u%1$~p2u!22sin2u%#

l~u22sin2u!$~p2u!1sinu cosu%1$~p2u!22sin2u%~u2sinu cosu!
. ~32!
m

this

tem
at-

no
th-

ale
In
is-

ar to

rate
ains

m
ive

er-
on-
if-
vior

el-
ent,
am-
To compare Eq.~31! to the simulation results we plot, in Fig
13, lnr againstu(r ) for the systems in Fig. 3. We expect th
the lattice Boltzmann interfaces obey Cox’s solution in t
region where tangential velocity is continuous across the
terface@identified in Fig. 7~b!#. In Fig. 13 this corresponds t
2.3& ln r&3.4, where all five interfaces are consistent w
u(r )} ln r. Furthermore, in this linear region the slope
u(r ) with ln r increases with increasingV0, as expected from
Eq. ~31!. Thus we have demonstrated the compatibility of t
our data with the classical two-fluid treatment.

FIG. 13. u(r ) vs lnr for the five systems of Fig. 3~The symbols
L, s, 1, h, andn denote systems a, b, c, d, and e of Table
respectively.! In the region where flow is expected to match t
classical slip solution (2.3& ln r&3.4) u increases linearly with lnr
@corresponding to the lnr term in Eq.~31!#. As the capillary number
increases the slope of the plot in this region increases, as expe
from the factor ofCa in Eq. ~31!. Therefore we conclude that ou
side the diffusive region the interface behavior is consistent with
classical solution@9#.
-

e

In the first study of the diffuse interface binary syste
applied to contact line motion, Jacqmin@2# identified a
length scale for the chemical potential and claimed that
scales asAhM (Df51 in Jacqmin’s work!. The length-
scale put forward by Jacqmin differs in form from Eq.~29!,
and is not supported by our data. Studying the same sys
as in Sec. IV, Jacqmin noted that the chemical potential p
terns ‘‘roughly halves in size’’ between data sets in whichj
~andM ) decreases by a factor of four. However, there is
quantitative analysis supporting the form used for the leng
scale.

The work of Chenet al. @3# suggests a length scale,l 0

5A(2Ms/V0(Df)2), which isA2s/(hV0) times the length
scale proposed by Jacqmin. Significantly this length sc
diverges asV0→0, a phenomenon we do not observe.
Ref. @3#, no direct measurement of a length scale is d
cussed. The identification ofl 0 comes from scaling the
convection-diffusion equation, treatingm and f as having
the same length scale. This suggests that in the region ne
the contact point the interface no longer has it static widthj.
However, our data indicates that, at least for the mode
shear rates considered here, the scale of the interface rem
determined by equilibrium properties. The flow fieldu and
chemical potentialm are only nonzero in the moving syste
and so their length scale is set by the size of the diffus
region.

We have shown how a diffuse interface model can ov
come the contact line problem, even under strict no-slip c
ditions. However an effective slip length, introduced by d
fusive effects, gives the same macroscopic interface beha
as a slip boundary condition. To pinpoint the physically r
evant mechanism, which may well be system depend
nanoscale experiments or extremely large molecular dyn
ics simulations will be needed.

,

ted

e
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APPENDIX: COEFFICIENTS FOR THE BINARY MODEL

The coefficients are

A25
Tr~Pab!

24
, ~A1!

A154A2 , A05n220A2 , ~A2!

B25
n

12
, B154B2 , ~A3!

C252
n

24
, C154C2 , C0516C2 , ~A4!

D25
n

8
, D154D2 , ~A5!
03160
hip

G2xx5
p

8
1

k

8
~]xf!22

Tr~Pab!

16
, ~A6!

G2xy5G2yx5
k

8
@~]xf!~]yf!#, ~A7!

G2yy5
p

8
1

k

8
~]yf!22

Tr~Pab!

16
, ~A8!

G1ab54G2ab for all a,b, ~A9!

H25
Gm

12
, H154H2 , H05f220H2 , ~A10!

K25
f

12
, K154K2 , ~A11!

J252
f

24
, J154J2 , J0516J2 , ~A12!

Q25
f

8
, Q154Q2 . ~A13!
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